Code: 20CE2501A

III B.Tech - I Semester – Regular / Supplementary Examinations NOVEMBER 2024

AIR POLLUTION AND CONTROL

(Common to ALL Branches)

Duration: 3 hours

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

Max. Marks: 70

			BL	СО	Max.			
					Marks			
UNIT-I								
1	a)	Define air pollution. Explain the effect of air	L2	CO1	7 M			
		pollution on ecosystem.						
	b)	Compare between primary and secondary	L2	CO1	7 M			
		air pollutants.						
OR								
2	a)	What is greenhouse effect? Explain its	L2	CO1	7 M			
		causes and effects.						
	b)	What are the causes of ozone depletion?	L2	CO1	7 M			
		Explain the effects of ozone layer thinning.						
UNIT-II								
3	Wr	te about various air quality models and	L3	CO2	14 M			
	exp	lain the Gaussian plume dispersion equation						
	for	the gaseous pollutants.						
OR								

4	a)	With a neat sketch, discuss the Plume	L3	CO2	7 M
		behaviour for different atmospheric conditions.			
	b)		L3	CO2	7 M
	b)	With a neat sketch explain about Windrose diagram and its applications.	LJ		/ 11/1
		diagram and its applications.			
		UNIT-III			
5	a)	Explain the importance of monitoring and	L2	CO3	7 M
		analysis of air pollutants.			
	b)	Explain the procedure for sampling of	L3	CO3	7 M
		particulate pollutants.			
	I	OR			
6	a)	List and discuss the various difficulties	L2	CO3	4 M
		faced during air sampling.			
	b)	Explain how to monitor and analyse the air	L3	CO3	10 M
		pollutants i) SO_X and ii) NO_X			
		UNIT-IV			
7	a)	Explain the working principle of settling	L2	CO4	7 M
		chamber to control particulate air pollutants.			
	b)	Explain the advantages and disadvantages	L3	CO4	7 M
		of Electrostatic Precipitators and also			
		explain the working principle of it.			
		OR			
8	Wr	ite a short note on	L2	CO4	14 M
	a) S	Scrubbers			
	b) Bag house filters				
	<u>ı</u>				

UNIT-V								
9	Mention the common methods of control of	L2	CO5	14 M				
	gaseous contaminants and describe any one of							
	them in detail.							
OR								
10	Explain about Control of NO _x gases.	L2	CO5	14 M				